KAUFFMAN–HARARY CONJECTURE HOLDS FOR MONTESINOS KNOTS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Slopes for Montesinos Knots

FOR A KNOT K c S3, let S(K) c Q u {CQ} be the set of slopes of boundary curves of incompressible, %incompressible orientable surfaces in the knot exterior, slopes being normalized in the standard way so that a longitude has slope 0, a meridian slope co. These sets S(K) of %slopes are of special interest because of their relation with Dehn surgery and character varieties; see e.g., [2]. The only...

متن کامل

Seifert fibered surgery on Montesinos knots

Exceptional Dehn surgeries on arborescent knots have been classified except for Seifert fibered surgeries on Montesinos knots of length 3. There are infinitely many of them as it is known that 4n + 6 and 4n + 7 surgeries on a (−2, 3, 2n + 1) pretzel knot are Seifert fibered. It will be shown that there are only finitely many others. A list of 20 surgeries will be given and proved to be Seifert ...

متن کامل

Dejean's conjecture holds for n>=30

We extend Carpi’s results by showing that Dejean’s conjecture holds for n ≥ 30. The following definitions are from sections 8 and 9 of [1]: Fix n ≥ 30. Let m = ⌊(n− 3)/6⌋. Let Am = {1, 2, . . . , m}. Let ker ψ = {v ∈ A ∗ m|∀a ∈ Am, 4 divides |v|a}. (In fact, this is not Carpi’s definition of ker ψ, but rather the assertion of his Lemma 9.1.) A word v ∈ A+m is a ψ-kernel repetition if it has per...

متن کامل

The Komlos Conjecture Holds for Vector Colorings

The Komlós conjecture in discrepancy theory states that for some constant K and for any m× n matrix A whose columns lie in the unit ball there exists a vector x ∈ {−1,+1} such that ‖Ax‖∞ ≤ K. This conjecture also implies the Beck-Fiala conjecture on the discrepancy of bounded degree hypergraphs. Here we prove a natural relaxation of the Komlós conjecture: if the columns of A are assigned unit v...

متن کامل

Immersed surfaces and Seifert fibered surgery on Montesinos knots

We will use immersed surfaces to study Seifert fibered surgery on Montesinos knots, and show that if 1 q1−1 + 1 q2−1 + 1 q3−1 ≤ 1 then a Montesinos knot K(p q1 , p2 q2 , p3 q3 ) admits no atoroidal Seifert fibered surgery.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Knot Theory and Its Ramifications

سال: 2004

ISSN: 0218-2165,1793-6527

DOI: 10.1142/s0218216504003251